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Abstract Two ways for bounding n-variables functions over a box, based on interval
evaluations of first order derivatives, are compared. The optimal Baumann form gives
the best lower bound using a center within the box. The admissible simplex form,
proposed by the two last authors, uses point evaluations at n + 1 vertices of the box.
We show that the Baumann center is within any admissible simplex and can be rep-
resented as a linear convex combination of its vertices with coefficients equal to the
dual variables of the linear program used to compute the corresponding admissible
simplex lower bound. This result is applied in a branch-and-bound global optimization
and computational results are reported.

Keywords Interval arithmetic · Lower bound · Baumann form · Admissible
simplex form · Global optimization.

1 Introduction

Interval analysis [14, 15], has led to many branch-and-bound algorithms for global
optimization of univariate or multivariate non-linear and non-convex analytical func-
tions, possibly subject to constraints [4, 6–9, 11, 13, 17, 18]. These techniques provide
precise enclosures for the optimal value and for one or all optimal solutions with an
absolute guarantee, i.e. the errors induced can be bounded to an arbitrary degree
specified by the user.
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This paper focuses on such algorithms [6, 9, 17] and specifically on linear bounding
techniques where basic tools are linear centered forms [10] (automatic differentiation
and interval arithmetic are used for enclosing the gradient of a function). We examine
two particular cases of linear bounding, the optimal centered form of Baumann [2, 3]
and the admissible simplex form, due to the two last authors [12, 13]. We study links
between these two methods. In particular, a property of convexity is used to get a
tighter enclosure of the optimum.

The study is restricted to unconstrained minimization problem over a box X for
multivariate differentiable functions. Section 2 presents notation and basic tools. The
optimal centered form of Baumann is introduced briefly in Sect. 3 and the admissible
simplex form is presented in Sect. 4. A property of duality and convexity for multi-
variate functions is brought to light in Sect. 5. The convexity part of this property is
used as an accelerating device. Numerical experiments are gathered and discussed in
Sect. 6. Brief conclusions are stated in Sect. 7.

2 Basic tools and notation

The problem definition is given and throughout this paper all the following notation
are used:

• R and R
n denote the sets of real numbers and real n-vectors.

• X = (X1, X2, . . . , Xn) is a n-dimentional interval in R
n where Xi = {xi ∈ R :

ai ≤ xi ≤ bi} , ai and bi have fixed values.
• ∇f denotes the gradient of f .
• Searching for the global minimum of an unconstrained real-valued differentiable

function f , our aim is to find (x∗, f ∗) with a given precisions where f ∗ := f (x∗) =
infx∈X f (x) and x∗ is a minimizer. We deal, mainly, with linear lower bounds for
the function f .

• The central theoretical result, used in this paper as a basic tool to construct lin-
ear under estimations of the function, is the mean value theorem, namely f (x) =
f (c) + (x − c)t∇f (ξ) for x and c in X, where ξ is a point between x and c.

• Let c = (c1, c2, . . . , cn) be a fixed point in X, the center of the so-called linear
centered form. We assume that the partial derivatives of f satisfy the relation
Lk < ∂f (x)/∂xk < Uk for any x in X. In the sequel, the function f is supposed
to be not strictly monotone with respect the kth coordinate direction, hence we
examine only the hypothesis

(H0): Lk < 0 < Uk for any k.

• Let x be any point such that ai ≤ xi ≤ ci for i ∈ I ⊂ {1, 2, . . . , n} and cj ≤ xj ≤ bj
for j ∈ J = {1, 2, . . . , n} − I then the following linear lower bound holds f (x) ≥
z(x) = f (x) + ∑

i∈I(xi − ci)Ui + ∑
j∈J(xj − cj)Lj.

Many choices are possible for the center c. The most popular one is the center
of the box, ci = (ai + bi)/2. It has been shown, however, by Baumann [2, 3] that an
optimal choice c−

B exists, for linear centered forms, which gives the best lower bound
of the function. An extremal point of X may also be chosen as center; then the linear
form is called a linear boundary value form (lbvf ) [12, 13, 15].
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The main practical difficulty encountered with centered forms lies in the time con-
suming computation of enclosures for the partial derivatives. This is overcome by
using simultaneously Automatic differentiation and Interval Arithmetic [1, 2, 9].

Automatic (Arithmetic) differentiation is a numerical chain rule-based technique
for evaluating derivatives at any order of a function [5, 16]. If the numerical values
of (u(x), u′(x)) and (v(x), v′(x)) are known, then (u(x) � v(x), (u(x) � v(x))′) may be
computed numerically for any elementary operation �. The derivative of v(u(x)) may
be computed as well and finally the derivatives of elementary functions such as trig-
onometric or exponential functions are supposed to be known. Different algorithmic
modes may be used but the reverse mode has the advantage of a low computational
cost, see for example the book of Griewank [5].

Interval arithmetic uses operators defined over compact sets which are real inter-
vals of R. Let X = [xL, xU] := {x ∈ R : xL ≤ x ≤ xU} and let Y = [yL, yU] be another
interval, Z = X � Y := {x � y : x ∈ X, y ∈ Y} where � ∈ {+, −, ×, ÷}. Z is an interval
since the operations are continuous in Standard Interval Arithmetic [4], because it is
assumed that 0 /∈ Y for the computation of X–Y.

An interval vector G = (G1, G2, . . . , Gn) [1, 14] is assumed to enclose the partial
derivatives of the function: Gi = [Li, Ui] and Li ≤ ∂f (X)/∂xi ≤ Ui for i = 1, 2, . . . , n.
The components of G are available from automatic differentiation, again interval
arithmetic is used for the computations, but any other inclusion function for the range
of ∇f (x) over the box X could be used. Then for any x ∈ X, f (x) ∈ f (c) + (x − c)tG
and f (X) ⊆ Fc(X) := f (c)+(X −c)tG when interval operators are used. However our
main target is not a tight enclosure of the range f (X) but only a sharp lower bound
for the function.

The optimal centered form of Baumann presented in the next section yields the
greatest lower bound among all possible centered forms.

3 Optimal centered form of Baumann

Let f be an univariate function defined over X := [a, b] ⊂ R with L ≤ f ′(X) ≤ U and
L < 0 < U, see (H0).

The mean value form induces a concave relaxation obtained by linear lower bound
functions, see Fig. 1 for a geometrical interpretation. Then a lower bound of the
function is reached at an extremal point of X:

z−
c = min {f (c) + (a − c)U, f (c) + (b − c)L} .

The optimal center c−
B of Baumann [2] is obtained when f (c)+(a−c)U = f (c)+(b−c)L

and gives the so-called optimal (linear) centered form of Baumann, one can see on
Fig. 1 that, in this case, the two points M = (a, f (a)) and N = (b, f (b)) are at the same
level, leading to

c−
B = aU − bL

U − L

and the corresponding lower bound,

z−
B = f

(
aU − bL

U − L

)

+ (b − a)LU
U − L

.
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Fig. 1 Example of a Baumann under-estimation

Example 1 For f (x) = x2 − x, X = [0, 2], min f (X) = −1/4 and the lower bound is
z−

B = −7/4 with c−
B = 1/2 (see Fig. 1).

The Baumann formula is componentwise separable [3]. This advantage follows
from the fact that the coordinates of the optimal center are independent of the func-
tion values. Therefore, the optimal Baumann centered form can be easily generalized
to the multivariate case.

Let c−
B = (c−

1 , c−
2 , . . . , c−

n ) then we get immediately c−
i = aiUi−biLi

Ui−Li
for i = 1, 2, . . . , n

and the corresponding lower bound is given by:

z−
B = f (c−

B) +
n∑

i=1

(bi − ai)LiUi

Ui − Li
,

which follows from a linear concave relaxation.

Example 2 Consider the function f1(x1, x2) = 1 + (x2
1 + 2)x2 + x1x2

2, with x1 ∈ [1, 2]
and x2 ∈ [−10, 10]; one has z−

B = −442.58 · · · and c−
B = (1.2222 · · · , −1.084333 · · · )

for f ∗ = −3.5.

4 Linear boundary value forms

One assume again that Li ≤ ∂f
∂xi

(X) ≤ Ui and that (H0) holds, i.e. Li < 0 < Ui (for all
i ∈ {1, . . . , n}).

4.1 The univariate case

As shown, e.g. in Neumaier’s book [15], p60, a useful bicentered form can be built by
choosing as centers, the end points a and b of X. This induces a convex relaxation of the
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function f obtained again by linear lower bound functions, the so-called lbvf. A lower
bound on the function values for x ∈ [a, b] is then obtained by intersecting the two
lines y = f (a) + (x − a)L and y = f (b) + (x − b)U leading to the point S = (s−, z−

lbvf),
vertex of a convex cone, with coordinates:

s− = f (a) − f (b)

U − L
+ (b − a)LU

U − L

and,

z−
lbvf = Uf (a) − Lf (b)

U − L
+ (b − a)LU

U − L
.

Example 3 For f (x) = x2 − x, X = [0, 2], min f (X) = −1/4 and the lower bound is
z−

lbvf = −1 with s− = 1 (see Fig. 2).

4.2 The multivariate case

The preceding method may be extended to multivariate functions [13] and was called
admissible simplex form in this paper. In that case the lower bound follows again from
a convex relaxation, which is constructed with linear boundary forms. Geometrically
this lower bound is reached at a point S obtained by intersecting n +1 suitably chosen
hyperplanes of R

n × R. S is the vertex of a simplicial convex cone. Each hyperplane
is the geometrical representation of a linear centered form, the center of which is
a vertex Sk of X. Let Ik ⊂ N = {1, 2, . . . , n} and Jk = N − Ik, the equation of the
hyperplane �k related to the vertex Sk is:

zk(x) = f (Sk) +
∑

i∈Ik

(xi − ai)Li +
∑

j∈Jk

(xj − bj)Uj.

The following relations are satisfied :
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Fig. 2 Example of a lbvf under-estimation
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• zk(Sk) = f (Sk),
• ∀x ∈ X, zk(x) ≤ f (x) and zk(x) ≤ zk(Sk).

We must find an admissible set of vertices S0, S1, . . . , Sn, which means that the inter-
section of their corresponding hyperplane �k yields effectively a lower bound of the
function over X. For that purpose we use the following method from [12, 13].

Let S0 be any initial vertex of X, then for every k the vertex Sk+1 is selected by
changing only one coordinate in Sk, according to the following rule:

• Let the Hl =| Kl | /(Ul −Ll), l = 1, . . . , n, where Kl is the coefficient of xl in z0(x),
equation related to S0, and thus Kl = Ll if l ∈ I0 and Kl = Ul if l ∈ J0 be ranked
in order of decreasing magnitude.

• Assume that Hl1 ≥ Hl2 ≥ · · · ≥ Hln ; starting from S0 change the coordinate l1 to
get S1, then change the coordinate l2 in S1 to get S2 and so on until one gets Sn
which is the opposite vertex of S0 on the box X.

In fact the set of vertices is admissible if and only if:

α0 = Hl1 ≤ 1, α1 = Hl1 − Hl2 ≥ 0, . . . , αln−1 = Hln−1 − Hln ≥ 0, αn = Hln ≥ 0.

This follows from the optimal solution of the linear program:

(Pl) min z subject to (x, z) ∈ E+
k , k = 0, 1, . . . , n

where E+
k = {(x, z) ∈ IRn × R : z ≥ zk(x), x ∈ X}.

We then get the lower bound:

z−
asf =

n∑

k=0

αkf (xk) +
n∑

i=1

(bi − ai)LiUi

Ui − Li
.

See [12, 13] for further details, and see Fig. 3 for an example of an admissible path
in IR3.

Example 4 Looking for the function f1(x1, x2) = 1+ (x2
1 +2)x2 +x1x2

2, with x1 ∈ [1, 2]
and x2 ∈ [−10, 10]. We obtain z−

asf = −314.5957 · · · using the following admissible
simplex (1, −10), (1, 10), (−10, 10), for f ∗ = −3.5.

Fig. 3 Admissible path in R
3
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5 Links between the preceding forms

In this section, we examine which of the two approaches described above gives the
best lower bound.

Let assume that Li ≤ ∂f
∂xi

(X) ≤ Ui and Li < 0 < Ui (for all i ∈ {1, . . . , n}), see (H0).
We consider univariate functions before turning to the general case.
First, equality between z−

B and z−
lbvf implies that:

Uf (a) − Lf (b)

U − L
= f

(
aU − bL

U − L

)

,

this means that the point (c−
B, f (c−

B)) is on the line joining the end points M(a, f (a))

and N(b, f (b)) of the graph of the function f .
Second, the point c−

B is a convex combination of the end points of X with weights
U/(U − L) and −L/(U − L).

Therefore, we get the following property:

Proposition 1 For any univariate differentiable function f , when (H0) is satisfied, the
lower bound resulting from the optimal centered form of Baumann is greater than the
lower bound given by the lbvf centered form if and only if

Uf (a) − Lf (b)

U − L
< f

(
aU − bL

U − L

)

.

Proof This is clear from the previous formula. This result may also be found in [8].

�

Remark 1 If f is a convex function over X, lbvf bounding yields a tighter lower bound,
and the advantage must be given to Baumann formula in the concave case. Moreover,
when f is convex, which is the case around a local minimum, f (c−

B) may be a good
upper bound for f ∗ = inf f (X) and then this value may be used in the computation of
a middle point test instead of mid(X) := (a + b)/2, (see [17]).

Let f̃ be the current upper bound for the minimum f ∗, then its new value could be
f̃ := min(̃f , f (c−

B), f (a), f (b)) and finally f ∗ ∈ [max
{
z−

B, z−
lbvf

}
, f̃ ].

Example 5 For f (x) = x2 − x, X = [0, 2] we get f (c−
B) = −1/4, z−

B = −7/4, z−
lbvf =

−1, f (a) = 0, f (b) = 2 and then f � ∈ [−1, −1/4]. Over X, f is a convex function, the
linear boundary form gives the best lower bound and f (c−

B) is a good upper bound for
f �, (see Fig. 4).

Conversely for the opposite (and concave) function f (x) = x − x2, z−
B = −9/4 and

z−
lbvf = −3.

For the unidimensional case, these properties have already been pointed out in
[1, 14]. We show in the next subsection how they can be extended to multivariate
functions.

5.1 Baumann center and admissible sets of vertices

An admissible set of vertices S0, S1, . . . , Sn, as defined in Sect. 4, is not contained in
one hyperplane of R

n. The convex hull of these vertices is a non-empty interior set,
simplex of R

n contained in X, and will be called an admissible simplex. The following
property is a generalization of the univariate case.
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Fig. 4 Comparison between Baumann and lbvf forms on a convex function

Proposition 2 The optimal center c−
B of Baumann for linear centered forms belongs to

the intersection of all the admissible simplexes.

Proof Let x1, x2, . . . , xn be the coordinates of S0, assume that the coordinates are
modified in increasing order of indices to get the successive vertices S1, S2, . . . , Sn,
after a new numbering if necessary. Then x1 is changed into y1 to get S1, x2 is changed
into y2 to get S2, and so on.

• First, let us write that c−
B = (c1, c2, . . . , cn)t is a linear combination of the vertices

Sk, c−
B = ∑n

k=0 βkSk and that
∑n

k=0 βk = 1.
Then we must solve the linear system of equations Mβ = c̃, where c̃ = (c1, c2, . . . ,
cn, 1)t and M is a square matrix of order n + 1

M =












x1 y1 y1 y1 . . . y1
x2 x2 y2 y2 . . . y2
x3 x3 x3 y3 . . . y3
...

...
...

. . .
...

...
xn xn . . . . . . xn yn
1 1 . . . . . . 1 1












.

This linear system has one and only one solution if and only if
∏n

k=1(yk − xk) �= 0,
which implies that X is a non-degenerated box. We get:

β0 = (c1 − y1)/(x1 − y1),

βk = (ck+1 − yk+1)/(xk+1 − yk+1) − (ck − yk)/(xk − yk), k = 1, 2, . . . , n − 1,

βn = (xn − cn)/(xn − yn).

• Second, let us prove that the linear combination is convex.
It remains to prove that βk ∈ [0, 1]. But taking the values ck for the coordinates
of c−

B , we find that βk = αk and the proof follows directly from Sect. 4. Thus the
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coefficients αk, k = 0, 1, . . . , n are the barycentric coordinates of c−
B in the simplex

conv(S0, S1, . . . , Sn) for any S0.

This achieves the proof. 
�
One can deduce a new relation between the two affine lower bound functions.

Proposition 3 The vector of the barycentric coordinates of c−
B is the optimal solution

of the linear program, dual of (Pl) for the corresponding admissible simplex.

Proof The coefficients αk defined in Sect. 4 are the marginal costs related to the
solution of (Pl) from where we get the lower bound z−

asf. 
�
Then, we see that these two bounding techniques associated, respectively, to a convex
and concave relaxation are strongly connected.

5.2 Comparison of the lower bounds

We deal now with the relative efficiencies of the lower bounds z−
asf and z−

B for mul-
tivariate functions. Keeping in mind their respective values, we can claim, following
the notation above:

Proposition 4 Let X be a box in R
n, let S0, S1, . . . , Sn be any admissible set of vertices

of X defined as above, then for a multivariate differentiable function the lower bound
z−

B given by the optimal linear centered form of Baumann is greater than the lower
bound z−

asf given by the simplex linear boundary value form over X if and only if

n∑

k=0

αkf (Sk) ≤ f (c−
B).

Proof Obvious from the analytical expressions of the lower bounds. 
�
Moreover, the coefficients αk are the barycentric coordinates of c−

B in the admissible
simplex; the convex set defined by the admissible simplex is denoted by
conv(S0, S1, . . . , Sn). Therefore the two lower bounds have the same value when the
point (c−

B, f (c−
B)) ∈ conv( (Sk, f (Sk)), k = 0, 1, . . . , n), n-simplex in R

n×R. This follows
from the fact that c−

B = ∑n
k=0 αkSk with

∑n
k=0 αk = 1 and αk ∈ [0, 1].

Corollary 1 If the function f is concave over the box X then z−
B is a greater lower bound

than z−
asf. Conversely, if the function f is convex (which is the case for a local minimum)

the best lower bound is given by z−
asf .

Example 6 Consider once more the function f1(x1, x2) = 1 + (x2
1 + 2)x2 + x1x2

2, with
x1 ∈ [1, 2] and x2 ∈ [−10, 10]; one has f (c−

B) = −1.35141 · · · and
∑n

k=0 αkf (Sk) =
126.6358 · · · . Therefore,

∑n
k=0 αkf (Sk) > f (c−

B). This implies that the lower bound is
most efficient using the asf form z−

asf = −314.5957 · · · (using the admissible simplex
(1, −10), (1, 10), (−10, 10)), for f ∗ = −3.5.

From the last result we can think that the two formulations may be used simul-
taneously to get a better efficiency in a branch-and-bound type method for global
optimization. For example, if the formula of Baumann yields a bad lower bound, one
can deduce that f (c−

B) has a lower value which could give a tight upper bound for f ∗,
and thus that value of the function may be used in a compound middle point test.
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6 Application to global optimization

The purpose of this section is to compare the efficiency of different inclusion functions
for some test problems of global optimization. The branch-and-bound algorithm we
use, is due to Moore–Skelboe and can be found in [17]. This algorithm is modified by
setting a new value for the current solution f̃, see the second item in 7(b).

6.1 Algorithm

The modified Moore-Skelboe algorithm is the following:
Algorithm

1. Set X := the initial domain in which the global minimum is
sought for, X ⊆ IRn.

2. Set f̃ := +∞.
3. Set L := (+∞, X).
4. Extract from L the box for which the lowest lower bound has

been computed.
5. Choose a coordinate direction k parallel to which the box has the

maximum length
6. Bisect the selected box normal to direction k, yielding two sub-

boxes V1, V2.
7. For j:=1 to 2 do

(a) Compute vj := lower bound of f over Vj by using one of the presented
methods.

(b) If f̃ ≥ vj then
• Insert (vj, Vj) in L.
• Set f̃ := min(f̃, f (m)), where m is a point in Vj

• If f̃ has been modified then remove from L all (z, Z)

where z > f̃.
8. If f̃ − min(z,Z)∈L z ≤ ε then STOP. Else GoTo Step 4.

ε is a positive value which represents the desired accuracy for the global minimum
value. The computation of the enclosures of the gradient are performed by using an
interval automatic differentiation code in direct mode [9]. The point m in a considered

box Vj is generally the middle point c of that box (i.e. ci = (Vj)
L
i +(Vj)

U
i

2 , ∀i). Neverthe-
less the enclosure of the function may be improved choosing a suitable point m, on
one hand considering the Baumann center c−

B and on the other hand considering the
middle of the interval c′ only when the monotonicity of the function is not established:

• c′
i = (Vj)

L
i + (Vj)

U
i

2
, if LiUi < 0,

• c′
i = (Vj)

L
i , if Ui ≤ 0,

• c′
i = (Vj)

U
i , if Li ≥ 0,

where Li and Ui represent the enclosure (lower and upper bounds) of the ith partial
derivative of the function considered. In this way, monotonicity is considered for the
computation of the upper bound f̃. The classical monotonicity test is not used here
in order to show clearly the efficiency of the lower bounds computed by using the
different methods. Here, the following methods using an enclosure of the gradient
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are considered (the natural interval extension of a function does not give generally
any solution for the considered following accuracies): Taylor at the order one, Taylor
Baumann, a linear boundary value form using an admissible simplex starting from the
vertex S0 = (

(Vj)
L
1 , . . . , (Vj)

L
i , . . . , (Vj)

L
n
)
, and a mixed form using Proposition 4 (the

best value between the Taylor Baumann or admissible simplex lower bound).

6.2 Numerical tests

All the tests are performed on a Standard-PC computer with an 1.8 GHz AMD Ath-
lon Processor and 256 Mb RAM using a Fortran-90 compiler. All the computations,
even the floating-point operations, are performed using rounded interval analysis [14];
this implies that all computations are rigorously performed: no numerical error can
occur.

The following considered functions come from the classical literature [13, 17]. f ∗
represents the optimal value and x∗ a corresponding optimizer as denoted in Sect. 2.

• f1(x) = 1 + (x2
1 + 2)x2 + x1x2

2, x1 ∈ [1, 2], x2 ∈ [−10, 10] ε = 10−8, f ∗ = −3.5, x∗ =
(2, −1.5).

• f2(x) = 2x2
1 −1.05x4

1 +x2
2 −x1x2 + 1

6 x6
2, ∀xi ∈ [−2, 4] ε = 10−8, f ∗ = −239.696, x∗ =

(4, 1.115).
−f2(x) = −2x2

1−1.05x4
1+x2

2−x1x2+ 1
6 x6

2, ∀xi ∈ [−2, 4] ε = 10−8, f ∗ =−239.696, x∗ =
(4, 1.115).

• f3(x) = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2, x1 ∈ [−2.5, 3.5], x2 ∈ [−1.5, 4.5] ε =
10−8, f ∗ = 0.45, x∗ = (3.4, −1.5).

• f4(x) = (
1 + ((x1 + x2 + 1)2)(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

)

× (
30 + ((2x1 − 3x2)

2)(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
)

,
∀xi ∈ [−2, 2] ε = 10−8, f ∗ = 3, x∗ = (0, −1).

• f5(x) = (x1 − 1)(x1 + 2)(x2 + 1)(x2 − 2)x2
3, ∀xi ∈ [−2, 2] ε = 10−8, f ∗ = −36, x∗ =

(−0.5, −2, 2).
−f5(x) = −(x1 −1)(x1 +2)(x2 +1)(x2 −2)x2

3, ∀xi ∈ [−2, 2] ε = 10−8, f ∗ = −36, x∗ =
(−0.5, −2, 2).

• f6(x) = 4x2
1 − 2x1x2 + 4x2

2 − 2x2x3 + 4x2
3 − 2x3x4 + 4x2

4 + 2x1 − x2 + 3x3 +
5x4, x1 ∈ [−1, 3], x2 ∈ [−10, 10], x3 ∈ [1, 4], x4 ∈ [−1, 5]ε = 10−8, f ∗ = 5.7708, x∗ =
(−0.17, 0.33, 1, −0.375).

• f7(x) = x2
1 + x2

2 − cos(18x1)x1 sin(18x2) + x3 cos(x3) + x1x2x3, ∀xi ∈ [1, 500]3 ε =
10−8, f ∗ = 1, x∗ = (1, 1, 9.148).

• f8(x) = (x1 +10x2)
2 + (5x3 −x4)

2 + (x2 −2x3)
4 +10(x1 −x4)

4, xi ∈ [−10, 10], ∀i, ε =
10−3, f ∗ = 0, x∗ = (0, 0, 0, 0). Function due to Powell.

• f9(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2, xi ∈ [−1000, 1000], ∀i, ε = 10−8, the
solutions are f ∗ = −1.0316, x∗ = (0, −0.713). Function due to Ratschek.

• f10(x) = 12x2
1 −6.3x4

1 +x6
1 +6x2(x2 −x1), xi ∈ [−100, 100], ∀i, ε = 10−8, f ∗ = 0, x∗ =

(0, 0). Function named Three-Hump.
• f11(x) = − 1

(

√
x2

1+x2
2−0.3)2+0.01

− 1

(

√
x2

1+x2
2−0.9)2+0.04

+6, x1 ∈ [−1, 2], x2 ∈ [0.001, 3] ε =
10−4, the solutions are f ∗ = −96.5, x∗ = (0, 0.288). Function hump.
−f11(x) = 1

(

√
x2

1+x2
2−0.3)2+0.01

+ 1

(

√
x2

1+x2
2−0.9)2+0.04

−6, x1 ∈ [−1, 2], x2 ∈ [0.001, 3] ε =
10−8, the solutions are f ∗ = −5.77, x∗ = (2, 3).
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In Table 1, computations of the different lower bounds only are considered. They
are denoted by T1 for the inclusion function based on a centered Taylor expansion at
the first order, TB for the inclusion function due to Baumann, AS for the inclusion
function which used the admissible simplex method, MIXED is a narrowing method
which chooses at each step the best method between TB and AS in a deterministic
way. For every technique the classical midpoint test is used considering f (c); where

ci = (Vj)
L
i +(Vj)

U
i

2 . In all the tables, “Pbs” represents the addressed problems: f1, f2 . . .,
“Its” is the number of iterations, “time(s)” is the CPU-time in seconds, “|L|” is the
number of elements in the list at the end of the program. In Table 3, “Nb AS” and
“Nb Baumann” represent the number of time where the admissible simplex versus
the Baumann methods are used inside the mixed algorithm (when equality occurs it
is noticed in “Nb equality”).

Comparing the four methods on Table 1, one can observe that AS is the most
efficient. In fact, it produces results close to those of the TB technique excepted for
the two hardest cases: f8 and f11. The mixed method leads to the best results when
considering only the number of iterations; that follows from Proposition 4. Unfor-
tunately, each iteration of the mixed algorithm is more expensive in CPU-time than
in the other methods and thus, most often the CPU-times for the mixed method are
almost equivalent to those of AS.

Considering the first column in Table 3, which denotes how much time each method
TB versus AS is used in the MIXED technique—always with the classical midpoint
test f (c)-, we see that the AS method generally produces the most efficient lower
bounds.

In Table 2, the middle point test is changed by the point c′ (which takes into account
the monotonicity of the considered function) and c−

B which is the Baumann center
(computed for z−

B) and an heuristic choice between these two values for the mixed
technique. The heuristic is to consider f (c−

B) when the AS produces the best lower
bound and f (c′) else. Comparing Tables 1 and 2, we observe impressive gains by con-
sidering these most efficient upper bounds: f (c′) and/or f (c−

B) (expected for f8 and
f11). Thus considering efficient upper bounds—which exploit the monotonicity of the

Table 1 Numerical results with f (c)

Pbs T1 TB AS MIXED

Its Time(s) |L| Its Time(s) |L| Its Time(s) |L| Its Time(s) |L|
f1 167 0.16 34 133 0.11 28 131 0.11 26 132 0.11 28
f2 87 0.11 23 87 0.11 23 84 0.16 22 86 0.11 23
−f2 116 0.17 27 109 0.11 27 84 0.16 22 110 0.11 29
f3 124 0.11 26 107 0.11 25 101 0.11 25 101 0.11 25
f4 5503 2.64 63 3847 1.92 47 3734 1.92 47 3731 2.15 47
f5 735 0.39 38 364 0.22 56 364 0.33 57 364 0.33 57
−f5 148 0.21 6 127 0.22 6 128 0.22 6 125 0.17 6
f6 2464 1.27 1079 1585 0.77 697 1136 0.60 511 1183 0.66 531
f7 13856 4.50 1567 9908 3.46 1564 9778 3.63 1518 9587 3.84 1535
f8 266973 2649.10 68035 112841 496.2 32847 57023 116.33 14881 57023 116.87 14881
f9 1222 0.49 24 753 0.27 19 691 0.27 19 687 0.28 19
f10 1270 0.39 10 813 0.28 11 693 0.27 9 689 0.28 9
f11 38048 68.22 14432 26894 42.89 12146 21583 27.91 10621 21583 28.17 10621
−f11 265 0.17 1 183 0.11 1 180 0.17 1 178 0.22 1
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Table 2 Numerical results with f (c′) or f (c−
B )

Pbs T1 + f (c′) TB+f (c−
B) AS + f (c′) MIXED + f (c′) or f (c−

B )

Its Time(s) |L| Its Time(s) |L| Its Time(s) |L| Its Time(s) |L|
f1 95 0.05 1 72 0.05 2 73 0.05 2 71 0.06 2
f2 41 0.05 0 39 0.05 0 37 0.06 0 37 0.05 0
−f2 64 0.05 1 56 0.06 2 84 0.16 22 53 0.05 0
f3 71 0.05 0 57 0.06 1 54 0.06 1 54 0.06 1
f4 5503 2.47 63 3847 1.81 47 3734 1.92 47 3731 1.98 47
f5 453 0.16 15 221 0.05 7 213 0.05 14 213 0.05 11
−f5 49 0.01 22 25 0.04 5 26 0.01 2 26 0.01 2
f6 1330 0.55 54 840 0.33 30 597 0.33 36 596 0.33 34
f7 13856 3.95 1133 9908 2.69 1073 9778 3.19 1027 9587 3.13 1034
f8 266885 2744.02 67980 112769 492.73 32728 57023 113.92 14880 56987 116.55 14847
f9 1222 0.22 24 753 0.16 19 691 0.22 19 687 0.21 17
f10 1270 0.32 10 811 0.06 9 693 0.17 9 689 0.11 3
f11 38048 67.44 14432 26894 42.62 12146 21583 27.63 10621 21583 28.23 10621
−f11 217 0.05 1 135 0.01 0 132 0.05 0 130 0.01 0

Table 3 Number of computed lower bounds

Pbs MIXED + f (c) MIXED + f (c′) or f (c−
B )

Nb AS Nb Baumann Nb equality Nb AS Nb Baumann Nb equality

f1 193 27 44 116 11 15
f2 85 10 77 52 4 18
−f2 109 31 72 81 5 20
f3 167 0 35 91 0 17
f4 6696 763 3 6696 763 3
f5 508 60 160 332 19 75
−f5 26 15 209 26 15 11
f6 2024 176 166 332 19 75
f7 13624 2974 2576 13624 2974 2576
f8 107818 93 6135 107748 93 6133
f9 1198 58 118 1198 58 118
f10 1088 108 182 1088 108 182
f11 32250 57 10859 32250 57 10859
−f11 155 79 122 155 79 26

function—the convergence of such branch-and-bound algorithms can be considerably
improved.

In that case, the AS method produces most often the best lower bounds (see the
second column of Table 3).

7 Conclusion

This paper proposes a deterministic way to compare two of the most efficient meth-
ods for computing a lower bound of a function over a box. The first method is due to
Baumann [2, 3]. The resulting lower bound is calculated using a Taylor expansion at
the first order and computing the optimal center of this form. The second method was
introduced in [12, 13] and is based on a linear boundary value form.
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Proposition 4 allows determination of which one between the two methods TB and
AS is locally the most efficient by only comparing the evaluation of the considered
function at the Baumann center with n + 1 function values.

These main results on duality and convexity are introduced into a Branch-and-
Bound algorithm for global optimization in order to compare these different bounding
methods on some numerical tests. Fourteen functions from the literature are mini-
mized. These numerical experiments clearly show that the AS method produces the
most efficient bounds (see Table 3). Proposition 4 also leads to a mixed method, called
MIXED in the tables of results. This mixed method produces the most efficient lower
and upper bounds and consequently the best results when considering the number of
iterations only. However, the comparison test of MIXED is expensive in CPU-time
and with this last criterion the results are close to those of the AS method.
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